

Architecting a Reusable Platform for
Pervasive Augmented Reality Games
based on Petri Net Models

Abstract
Pervasive Games require complex technical challenges
to be overcome and their design space is yet mostly
unexplored. In this paper we present a reusable
platform for quickly designing, deploying and
evaluating and managing multiplayer Augmented
Reality Games. The games can explore visual and aural
AR techniques, GPS and QR interface mechanics, and
are structured as a set of activities defined using Petri
Net models. These ARGs are typically played outdoors,
using a smartphone client application. Evaluation of the
platform involved field testing with realistic game
designs exploring Cultural Heritage scenarios.

Author Keywords
Augmented Reality Games; Game Platform; Game
Design.

ACM Classification Keywords
K.8.0 [Personal Computing]: General—Games.

General Terms
Game Design; Augmented Reality; Pervasive Games;
Petri Net.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Tiago Agostinho,
Ivo Cosme,
Licínio Roque
Informatics Eng. Dep.
University of Coimbra
3030-290 Coimbra, Portugal
tacagostinho@gmail.com,
ivocosme@gmail.com,
lir@dei.uc.pt

Fernando Milagaia,
Fausto de Carvalho
Portugal Telecom Inovação, SA.
Aveiro, Portugal
fernando-j-milagaia@ptinovacao.pt,
cfausto@ptinovacao.pt

Introduction
Pervasive Games merge into real life, combining
physical, social, and virtual worlds, exploiting mobile
technology - sensing, positioning and frequently
touchscreens - as interaction devices. Their potential
remains mostly untapped in today’s society, even
though this kind of technology has become ubiquitous
and advanced devices follow us everywhere, especially
in urban contexts. Nowadays, the smartphone is a
device that has a vast array of ways to interface with
our surroundings, and present information to us. We
can take movement, location, orientation and camera
data to layer visual and aural information onto the real
world, to augment it. Mobile augmented reality is
starting to populate the mobile market, mostly by
means of small but rich applications. Still, the process
of creating a mobile AR game can be technically
demanding, with many unpredictable interactions, both
technically and socially. Moreover, the process of
designing a game involves several phases and
challenges, from idea to implementation. In this work
we approached a previously recognized need to solve
[CHI'2013 Reusable??] the problem of designing a
general purpose reusable software infrastructure for
defining, deploying and testing a diverse set of
Pervasive Games exploiting AR techniques.

Software, Game and Interaction Design disciplines all
resort to diverse modeling techniques to get a better
understanding of what to build, mostly involving some
form of flow diagrams and state charts, along with
models of the software logic. Some authors have shown
that game related logic can be modeled to some
advantage by using Petri Nets [??]. A Petri Net is a
directed graph, where transitions can represent tasks
or activities, and places are populated with tokens to

define the state of the network representing the game
system. Interconnections represent action
dependencies on resources of certain subsets of the
system state. (which consume a given amount of
tokens and specify production of tokens on output). In
this work we adopted Petri Net diagrams as a basis for
specifying game designs, and used it to map these
designs directly into a computable implementation that
can be immediately deployed and tested. With this we
studied the feasibility of a software system
implementing this architecture and the practicality of
defining and playtesting pervasive AR games based on
a reusable infrastructure.

In this paper we propose the architecture for a reusable
platform for the quick creation and agile deployment of
pervasive AR games, using smartphone technology. We
used the multitude of interaction means supported by
the smartphone to exploit techniques such as visual
and aural overlays, location and direction tracking, time
and proximity-based, and QR tag reading, as a basis to
define a set of general action types. After defining
game interactions they are encoded and their
dependencies modeled using a Petri Nets modeling
interface. This approach significantly speeds up the
process of defining and deploying game variants for
shortening the playtesting cycle.

Over the next sections we will present the design and
implementation of the proposed architecture and an
evaluation of the platform that was performed by game
design students. The evaluation involved executing field
tests with realistic proof-of-concept game designs, that
also provided interesting indicators on the quality,
design spectrum and pervasiveness of the games
supported.

Related Work
Augmented Reality Games
Augmented Reality has been applied in games since the
early 2000s, with notorious seminal projects such as
ARQuake [5] or the Human Pac-Man [7]. However, for
several years, it was restricted to the use of complex
(and heavy) contraptions of wearable machinery, such
as head-mounted displays, large GPS trackers, and
backpack computers. With the rising of stronger, lighter
and more multifunctional devices such as smartphones
and tablets, a new generation of AR games became
more practical.

Still today AR games are being developed mostly for
small scale indoor scenarios involving the physical
presence of fiducial markers or other small items that
map into virtual objects or characters on a game
setting. For instance, we have ARhrrrr [4], an
Augmented FPS with an aerial view of a 3D mini town
(mapped onto a paper sheet) which is overrun with
zombies. Marker-dependent AR games may have
prematurely reached their peak potential. Marketization
has been achieved with for instance, the PSP game
Invizimals [13].

On the other hand, AR games are still taking their baby
steps in the field of outdoor games, especially market-
wise. These comprise mostly treasure hunting or other
types of rather simplistic or obvious interaction designs,
limited to the context of the player’s location and use of
the camera. These limitations are often compensated
with incorporation of multiplayer aspects (either for
competition or collaboration scenarios). NBA: King of
Courts [17], is a smartphone game in which physical
places become basketball hoops where points are
scored in a multiplayer social environment.

Another reason for interface simplicity is that outdoor
AR games nowadays are more directed to be played
occasionally during mid-short intervals (ex: while
commuting). Also, they are played on-the-move, with a
smartphone, implying that the GPS, wireless
connection, and video feed are already being used,
leaving little battery power for such complex methods
as contour recognition. Some projects managed to
solve this restriction by using other computation
devices, but sacrificing mobility. For instance, Carcade
[6] is an in-car videogame for the passengers, which
captures the landscape’s silhouettes (via laptop and
camera) and combines them into a racetrack.

Pervasive Games
Pervasive gaming is a rather new research area and
still in the phase of exploration. Of all the topics related
to our research project, this had the most innovative
published references we could find. However, one can
consider that the most confined types of pervasive
games (indoor with only basic sensors) have already
reached the market (via Nintendo Wii). Player Space
Director [11] is a framework to ease the creation of
pervasive games, by portraying as an abstraction layer
that integrates the inputs of a collection of sensors and
the metadata retrieved (e.g. gesture processing). Some
proof of concept games were created such as the
treadmill-racing game Swan Boat [2].

Once we move outdoors, most researchers aim to put
to test highly original concepts. For instance, these can
either use the entire Wi-Fi network of a city into the
capture-the-base multiplayer game panOulu Conqueror
[20], or enhance cooperation by using only locally
created ad-hoc networks on the game Transhumance
Team Exploration [9].

One factor however is vastly common in research
designs: Most outdoor concepts end up being loosely
based on a treasure hunting mechanic, sometimes with
a decent degree of narrative involved.

The iPerg [14] was a large-scale European project, that
comprised designing and testing several pervasive
games of diverse types. The initiative lasted almost
four years and during that time it included treasure
hunts and multiplayer alternate reality games, even
featuring actor rosters and scripts.

Ingress [12] was Google’s recent take on Pervasive
Gaming through a complex alternate-reality narrative
where a faction is “trying to establish portals around
the world” and the other is “trying to stop them” via
gathering a virtual resource (“Exotic Matter”) and
“hacking” “Portals” located at some city’s points of
interest.

Petri Net Modeling of Games
The feasibility of modeling games with Petri Nets has
been proposed and studied previously. Since the use of
UML at a conceptual or even specification level “lacks
formal semantics that prevent them from being used in
rigorous model analysis” [3], and Flowcharts “are
limited to the modeling of sequential, non-concurrent
systems”, with little or no support for “conflict or
concurrency for resources” [3] we explored Petri Nets
as formal models that are expressive, easy to learn and
can be used as computable models.

As proposed in [19], Petri Nets solve the gaps
mentioned above. Petri Nets were invented in 1939 by
Carl Petri with the purpose of describing chemical
processes. The initial diagram concept has been

extended in various ways and used in many and
diverse domains. Petri Nets became an increasing asset
during the rise of business modeling within the industry
of Information Systems to represent workflow
processes in a simple and accessible way [1]. The main
reason behind this is that, with a few extensions, Petri
Nets can model virtually any process. Since Petri Nets
are graphic representations and composed by creative
arrangements of repeated use of such a small set of
elements, they become easy to learn and to use.
Another advantage is that one can use a divide-and-
conquer approach by subdividing the process model
into smaller Petri Nets, by zooming in and out on parts
of a larger network.

Definition of games with Petri Nets can be seen in [3],
where a strategy game involving the Portuguese
Maritime Discoveries was modeled through several
subnets. These Petri Nets modeled both the game
mechanics (such as the energy and state of the ship)
and the flow of player action (the actions players could
take at any given moment, considering the existing
conditions). The ability to represent concurrency is a
valuable asset for strategy games and massively
multiplayer online RPGs. Also, as Petri Nets have a
mathematically strict formality, the games flow can
easily be simulated through existing tools, to help
foreseeing issues before implementing the game.

With small expansions to the original concept of a
place, the authors of [22] were able to design and
simulate complex quests for NeverWinter Nights via
Petri Nets, before inserting them into the game using
the built-in Plot Wizard. The extended Petri Net design
was able to model every aspect about Non Playable
Characters interaction and item achievement.

Modeling AR Games with Petri Nets
The structuring of the games on our platform is based
on an adapted Petri Net model. Here, for readability,
transitions are named actions, places are dubbed as
resources, and dependencies that link them are named
bridges or connections. Resources, along with the
Tokens that populate them, define the state of the Petri
Net, i.e. the Actions that can be executed at a given
moment. An action can be executed if all its input
resources have the required amount of tokens to be
consumed and, upon execution, produces the specified
amount of tokens in all of its output resources (except
for a few macro-actions that encode differentiated flows
of execution).

Each player has its own private Petri Net network
marking (which tokens are at each place, repesenting
player state in the game). To enable definition of team
gameplaying and other player interactions, some
resources can be shared by all game participants state
or only among team members.

On top of this, the designer can define Goals that can
be associated with resources to trigger when a specified
condition or amount of tokens is reached. These goals
can also be used to mimic the concept of obtainable or
collectable items on an inventory. A point counter can
also be linked to a resource, which supports the notion
of a player's score or even a player ranking system.

Player Actions can be of several types, including:

§ Point and Click: If the player enters a proximity
zone for a GPS coordinate, she will see an AR overlay
when pointing in a given direction. Action finishes by
clicking the object displayed;

§ Listen And Click: Player is invited to hunt for the
source of a sound with only the hearing sense (louder
as the player the closes in in the right direction);

§ QR Collect: collect printed or on-screen QR codes
from the environment or from other players;

§ QR Mobile Collect (to be paired with QR Mobile):
The first player reads a QR code directly from the
second player’s device. Used to model direct player
interaction;

§ Dialog Message: shows a message to the player,
e.g. for narrative, orientation or other purposes, with
an image and a textual component;

§ Dialog (Single or Multiple) Answer: a question and
answering interface (useful for narrative insertion and
progression checking). Can be specified to produce
tokens on different outputs depending on the answer
given;

§ Timed Event: an action that is triggered when a
time condition is met, enabling other actions by
releasing tokens satisfying their dependencies;

§ Enter (and Exit) Proximity: this action fires when
the player enters (or exits) the radius of a location;

§ Player Router: automatically produces tokens on
only one of its outputs, used to distribute or direct
game flows based on random conditions;

§ Player Selector: automatically produces tokens on
only one of its outputs (based on some feature such as
player’s email address).

The example on figure 1 maps a game network model
symbolizing the synergy of an ant colony. First, players
would be asked “Do you like sugar?”, and according to
their answer they are redirect towards one of the
specified branches. If a player likes sugar, he would

Multiple
Answer

QR
Collect

Point And
Click

QR Mobile
Collect

QR
Mobile

Yes (7) No (5)

Image 1 – A Petri Net sample

5 7

hunt for sugar heaps via QR Collect (this action will be
available 7 times, the number of tokens loaded on its
precondition place). If he answers no, he can search for
virtual (augmented reality) sticks to build the colony,
via Point and Click actions (available 5 times). Once he
collects 7 sugar heaps, or 5 sticks, he can then interact
with a player that took the other path, and both reach
the end of the game. A goal could also be set on the
last resource place symbolizing the reaching of a final
achievement or prize.

The Proposed Architecture
Definition
The proposed architecture pictured in figure 2 is
comprised of two servers (Back Office and Gaming) and
an gameplay interface Client currently in Android. A
client application runs on Android operating systems.
The client communicates with the server via HTTP
requests. Each time there is a change in game state
affecting a player, the server pushes a notification (via
Google Cloud Messaging) to the corresponding client
application.

The Petri Net models for determining and executing
available game Actions is processed in the Game
Instance and Player Instance processes. When a Client
requests the execution of a given Action, this message
reaches the corresponding Player Instance (after being
handled by the service layers above). The Action
request and its private state dependencies are sent
from the Player Instance to the Game Instance for
verification and processing of the shared game state, to
determine whether the action is executable at the
moment and to generate its outcome. If enabled, the
Game Instance process performs the removal of tokens
from the input Resources, and generate the outputs

into the Action’s output Resources (both private and
shared). It then messages the new private Resource
states to the Player Instance. The whole change to the
state is replicated to the database via the Storage
process (in an asynchronous way, thus guaranteeing
better performance).

Figure 2. Proposed Software Architecture. Legend:
Red Components – Erlang Server processes;
Green Component – Android Client;
Purple component – Google Cloud Messaging Server;
Connectors: Continuous – messages, calls; Dotted – HTTP;

Player Player Player Player

Player Player Player Player

Player
Instance

Client (Android)

Web Service

Game
Dispatcher

Storage

Player
Dispatcher

GCM

Views Game
Instance

Controllers

Player

Back-Office Gaming

When states (Petri Nets markings) change, all affected
players’ device Clients are notified by the Game
Instance process via Google Cloud Messaging (GCM –
an Android push notification system) [10]. This
approach also creates a useful abstraction for the
Client, which only knows the playable Actions for one
player at a given moment, and thus handles only the
Action presentation and its interface with the player
(example interfaces pictured in figure 3).

The service side architecture has two major
functionality blocks. We just described the Gaming
component that is responsible for managing all running
games. The Back-Office functional block is a Website
for creating and editing game definition PN models via
a web Browser interface. It is coded in Nitrogen, an
Erlang Web Framework. This framework only handles
the VC (View and Controller) components of the MVC
architecture, leaving the Model component to be
handled in the Storage component, which is ideal for
this scenario, where we have only one database
definition.

Implementation
Our first attempt at implementing the architecture
included a much less scalable Ruby service that
managed game definitions and state as Petri Nets (PN)
encoded and updated on a relational database. That
implementation was abandoned due to a serious
bottleneck in database access, that rendered it
incompatible with real-time PN execution. Player
connections were managed through TCP/IP connections
and there were massive state pooling requests that
rendered the system quite unstable under intermittent
network conditions.

The current server is coded in Erlang [8], which is a
functional language structured as concurrent processes
that interact via messages (no locking mechanisms and
no shared states). In this Erlang implementation,
updating game state is done in memory, and therefore,
with limited concurrency over the database stored
state, that is managed by the Storage process.
Dynamically, the runtime processing can be described
as follows:

§ The Erlang server receives and parses requests on
its WebServer module. It uses MochiWeb [16] as the
HTTP server library

§ A message is then sent to the Player Dispatcher (if
it is of a private nature – concerning just the player’s
state) or the Game Dispatcher (otherwise)

§ Each online player has its own instance of the
Player module, that logs locations and information that
is not dependent on the specifics of each game he plays

§ Management of the Petri Net begins at the Player
Instance (one process instance for each player in each
game – holds every player private resource state) and
the Game Instance (one for each running game – holds
everything shared between players of a game and
manages game state changes)

§ Every single piece of information, for both online
games (running) and offline games (either stopped for
editing or without any active players at the moment), is
kept stored in the Mnesia [15] database (Erlang’s built-
in database module), that is accessed through Storage.

Player Interface
In figure 3, we can see two screenshots of the Client
interface: Map view and camera View.

Figure 3–Map and Camera View

§ Map – displays player’s and visible Actions’
locations on a map of the surroundings.

§ Camera (a.k.a. Gaming mode) – comprises the
almost all the visual content of the games. We can see
that a total of 5 Actions is playable at the moment. In
the bottom, there are 4 execution icons for (from left to
right) Dialog Answer, QR Collect, Dialog Message and
Listen and Click. The smiley on the center-left of the
camera is a Point And Click’s Augmented Reality object.
It is tethered to a location a few meters away in that
direction. If a player clicks the object it will be
captured, completing the Point And Click.

There are also other Client views for Inventory (related
to the Petri Net Goals), Ranking, Chat and Message
History, as well as a specific interface for each kind of
"activity" that can be coded in the game design.

Evaluation
To evaluate the reusability of the proposed architecture
with realistic game designs, we resorted to 3 student
design teams from a Game Design and Development
course from an Engineering Masters Program and from
a European Masters on Cultural Heritage Studies. The
Informatics Engineering game concepts developed were
more focused on promoting interaction between
players. The EuroMACHS design was centered on
adapting a Cultural Heritage scenario into a game
format, with a rich multipath narrative.

To translate the concepts into the platform, some
adaptations were made. These included mapping the
game concept into the required Petri Nets models and
rethinking some elements to take advantage of the
proposed reusable action types. The adventure style

narrative game concept became a Petri Net with over
70 Actions encoded, while the other games were
significantly simpler and more "circular" or repetitive,
with fewer actions and more cycles. After tuning the
proposed game designs, the final games deployed
were:

§ City by Night - player complete a set of challenges
spread throughout the nocturnal establishments of the
City. The barmen also played to confirm (using the
QRCollectMobile-QRMobile action pair) that certain
challenges have been fulfilled (e.g. drinking a shot).

§ PIDE vs Revolucionários - a multiplayer, team-
based game inserted on a pre-revolutionary Portuguese
context, where players take on one of two roles, either
the regime police or the insurgents, and walk to explore
the area searching for clues to the identity of their
adversaries, whom they have to capture before being
discovered themselves.

§ Mystery of Alta - a singleplayer game with a dense
narrative, where the player has to communicate with
the game characters (helpers/opponents), to act or to
decode clues, to explore the University surroundings,
acquiring knowledge about its history and traditions.

This collaboration culminated with a game exhibit day
where several users tried out the applications. This
corresponded to our field test, since multiple game
instances were running at the same time and it was
possible to understand in loco the difficulties posed by
some interfaces and the challenges associated with
envisioning how the players might act at each specific
location. To collect data, all requests to the server were
logged, along with some important data, such as,
location and player ids. Due to its high Petri Net

complexity paired with a large array of location-based
Actions, the Mystery of Alta game was also used for a
more extensive analysis leading an estimation of player
mobility.

Results
The support of three different game designs acted as a
first feasibility test for the platform and its reusability.
Both City by Night and Pide vs Revolutionários escaped
from the trend of treasure hunting that we have seen
on Pervasive Games. They were more focused on
player interaction than geolocation. These concepts
were only made possible within the platform by the
introduction of direct player interaction actions (i.e.
QRCollectMobile and QRMobile pairs) and routing
actions (e.g. Player Selector), thus pointing to the
relevance of these action types.

Cooperation with the design teams revealed the
importance of having a platform to quickly and
iteratively deploy game concepts with less coding
knowledge, which gave them more time to think on the
game elements and scenarios. On the other hand, their
usage of the platform served to validate existing
functions and as participatory design opportunity as
they requested changes/additions such as player
routing, random flow, and multiple answer redirection
actions that significantly enhanced the spectrum of
possible game definitions.

The field tests during the exhibit day produced a hefty
amount of log data. Some indicators could be drawn
from the Mystery of Alta case, as shown in table 1.
These values were defined to reflect an exploration rate
(an approach to movement detected between actions),
since it is based on the distances between locations of

consecutive requests. The mobility rate was calculated
to comprise all blocks of 10 seconds for which
cumulative distances were more than 10 meters,
signaling the players were active exploring the space
(to discard small movements or GPS corrections).

Indicator Mean
% Time exploring (player mobility rate) 61%
Average exploring speed 3 km/h

Table 1. Information drawn from Field Test results

In Mystery of Alta, with such large amounts of
dialogues and questions (which draw on the player’s
attention, creating intervals without movement), it was
rather interesting to verify that players dedicated 61%
of their game time exploring the action’s physical
surroundings. An average moving speed of 3 km/h is
close to human’s default walking speed (5 km/h [21]),
meaning that exploration was mostly made on-the-
move, which we think might be representative of what
to expect from pervasive games. Also, one should
notice that the speed isn’t too much on top of the
human’s walking speed. This means that players did
not just walk straight to the Action’s target location,
but instead deviated from the optimal route between
actions, thus also indicating exploration. Currently
there is still a lack of reference values to understand
what to expect while designing pervasive games,
therefore, these indicators can contribute with a first
useful approximation.

Acknowledgement
This research resulted from the AdVenture project
developed at IPN, in partnership and with funding by
Portugal Telecom Inovação in the scope the company’s
Plano de Inovação 2012-2012 and 2012-2013

Conclusions
In this paper we presented an architecture for a
reusable platform for designing and playtesting
pervasive AR games, validated through a set of design
cases and field tests. We also presented our approach
to modeling pervasive AR games resorting to Petri Net
models and a definition of general purpose action types
to be reused. We concluded that the approach for
defining and computing games with Petri Net definitions
is valid and agile, and that it could be well understood
by game designers to an interesting spectrum of game
models, that were quickly deployed and playtested. By
calculating player mobility rates and speeds we
validated indicators for the pervasiveness of the game
designs.

References
[1] Aalst, W. and van Hee, K. Workflow Management:
Models, Methods, and Systems. MIT Press (2004)

[2] Ahn, M., Choe, S., Kwon, S., Park, B., Park, T.,
Cho, S., Park, J., Rhee, Y. and Song, J. 2009. Swan
Boat: Pervasive Social Game to Enhance Treadmill
Running. Proc. 17th ACM international conference on
Multimedia, ACM (2009), 997-998.

[3] Araújo, M. and Roque, L. (2009). Modeling Games
with Petri Nets. Proc. of the DIGRA2009, London.

[4] Arhrrrr Zombies.
http://ael.gatech.edu/lab/research/handheld-ar/arhrrrr

[5] ARQuake.
http://wearables.unisa.edu.au/projects/arquake

[6] Carcade. http://www.ohgizmo.com/2008/10/08
/carcade-in-car-gaming

[7] Cheok, A., Fong, S., Goh, K., Yang, X., Liu, W. and
Farzbiz, F. Human Pacman: a sensing-based mobile
entertainment system with ubiquitous computing and

tangible interaction. Proc. NetGames 2003, ACM
(2003), 106-117.

[8] Erlang. http://www.erlang.org

[9] Gentes, A. Guyot-Mbodji, A. and Demeure, I..
Gaming on the Move: Urban Experience as a New
Paradigm for Mobile Pervasive Game Design. Proc.
MindTrek 2008, ACM (2008), 23-28.

[10] Google Cloud Messaging for Android.
http://developer.android.com/google/gcm/index.html

[11] Hwang, I., Lee, Y., Park, T. and Song, J. Towards a
Mobile Platform for Pervasive Games. Proc. of the
MobileGames 2012, ACM (2012), 19-24.
[12] Ingress. http://www.ingress.com/

[13] Invizimals.
http://www.invizimals.com/home.php?locale=pt_PT

[14] IPerG – Integrated Project of Pervasive Games.
http://www.pervasive-gaming.org
[15] Mnesia http://www.erlang.org/doc/apps/mnesia/

[16] Mochiweb. https://github.com/mochi/mochiweb

[17] NBA King Of Courts.
http://www.ogmento.com/games/nba-king-of-the-court

[18] Nitrogen. http://nitrogenproject.com/

[19] Petri, C., and Reisig, W. Petri Net.
http://www.scholarpedia.org/article/Petri_net Games.
Ext. Abstracts CHI 2009, ACM (2009), 4213-4218.

[20] Tiensyrjä, J., Ojala, T., Hakanen, T. and Salmi O.
panOULU Conqueror: Pervasive Location-Aware
Multiplayer Game for City-Wide Wireless Network. Proc.
of the Fun and Games 2010, ACM (2010), 157-165.

[21] Transafety Study Compares Younger and Older
Pedestrian Walking Speeds. http://
www.usroads.com/journals/p/rej/9710/re971001.htm

[22] Young-Seol L. and Sung-Bae C. 2012. Dynamic
quest plot generation using Petri net planning. Proc. of
the WASA 2012, ACM (2012), 47-52.

